'.) Check for updates

Electrochemical Science Advances

WILEY-VCH

ELECTROCHEMICAL
SCIENCE ADVANCES .,

| RESEARCH ARTICLE CETTED

Extending Equivalent Circuit Models for State of Charge and
Lifetime Estimation

Limei Jin%%3 | Franz Philipp Bereck’? | Josef Granwehr? | Christoph Scheurer®?

!Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany | %Institute of Energy Technologies - Fundamental
Electrochemistry (IET-1), Forschungszentrum Jiilich GmbH, Jiilich, Germany | 3Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

Correspondence: Christoph Scheurer (scheurer@fhi.mpg.de)
Received: 7 August 2024 | Revised: 16 December 2024 | Accepted: 17 December 2024

Funding: This study was supported by the Helmholtz AI Cooperation Unit (HAICU), project ‘Intelligent, individual battery management using spectroscopy
and machine learning’ (i2Batman).

Keywords: Chebyshev polynomials | electrochemical impedance spectroscopy | equivalent circuit modelling | state of charge | state of health

ABSTRACT

Equivalent circuit modelling (ECM) of electrochemical impedance spectroscopy (EIS) data is a common technique to describe the
state-dependent response of electrochemical systems such as batteries or fuel cells. To use EIS for predictive assessments of the
future behaviour of such a system or its state of health (SOH), a more elaborate digital twin model is needed. Developing a robust
and continuous SOH estimation poses a formidable challenge. In this study, a framework is presented where ECM parameters
are expanded in a high-dimensional Chebyshev space. It facilitates not only a mapping of the state of charge dependence with
robust boundary conditions but also an extension towards a more abstract SOH description is possible. Such methods can bridge
the gap between the experiment and purely data-driven techniques that do not rely on fitting of experimental data using a priori
defined models. In the absence of long-time impedance measurements of a battery, quasi-Monte Carlo sampling can be employed
to generate differently aged synthetic battery models with limited experimental impedance data. As additional data becomes
available, the space spanning the possible states of a battery can be gradually refined. The developed framework, therefore, allows
for the training of big data models starting with very little experimental information and assuming random fluctuations of the
model parameters consistent with available data.

1 | Introduction

In recent years, the rapid adoption of electric vehicles and
grid energy storage has underscored the importance of high-
performance and reliable battery systems [1]. Their efficiency and
longevity are crucial for achieving sustainable energy solutions.
In an ideal battery, charging and discharging should be infinitely
reproducible under a wide range of reasonable operating con-
ditions. However, in reality, batteries degrade as they undergo
multiple charging and discharging cycles [2]. To understand
and characterize their distribution of relaxation time behaviour
over time, the concept of separating timescales is useful. Over a

long timescale, state of health (SOH) designates a cell’s overall
condition and performance compared to its initial, pristine state
[3]. SOH is a fairly complex and nuanced concept that is not
solely determined by the slow ageing of a battery. For example,
SOH can be affected by sudden and unexpected events, such as
overcharging, overheating or other adverse conditions, which can
have a rapid and negative impact on the battery’s health [4]. A
battery can also experience partial recovery from specific types of
damage or degradation, particularly when promptly addressing
the adverse conditions [5]. Therefore, it is oversimplifying to
express SOH as, for example, the number of charging/discharging
cycles or the capacity ratio. Conversely, at a short timescale,
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state of charge (SOC) is relatively straightforward to define and
measure. It refers to the behaviour and changes that occur
relatively quickly and often within one charging/discharging
cycle and can be expressed as the ratio of the charge currently
available to the total charge capacity of the battery [6].

The characterization of a battery’s behaviour as a function
of SOC can be obtained, for example from electrochemical
impedance spectroscopy (EIS) measurements, which probe its
voltage response to a sinusoidal current input (or load) signal (or
vice versa) across a wide range of frequencies at different charge
states. These experimental impedance spectra are then param-
eterized by equivalent circuit models (ECM) to create a robust
battery model that reflects the dynamic changes in the battery’s
state and enables the reproduction of the battery’s behaviour by
simulating its response to a given current. The identification of
relevant sets of ECM parameters, while preserving their physical
significance, is achieved using distribution of relaxation time
(DRT) methods [7] and curve fitting across multiple EIS spectra.
By integrating EIS with ECM, a detailed characterization of the
battery’s behaviour at various SOC levels is enabled and can be
stored in a look-up table format. The resulting look-up tables
for ECM parameters can be further represented by interpolating
polynomials, compressing the data while preserving significant
trends that have been observed in these parameters as a function
of SOC. Several conventional polynomial interpolations come
with known inherent limitations when dealing with high-order
approximations, making them susceptible to issues like over-
fitting. To address these challenges and enhance the robustness
of the parameter quantification process, orthogonal basis fitting
methods, such as Chebyshev polynomials with their min-max
properties, emerge as a potential approach as discussed in detail
in Subsection 2.1.

The ECM parameters, or rather their explicit dependence on SOC,
also vary with SOH and performing individual EIS fitting at each
SOH could potentially yield a more accurate degradation model.
However, conducting sets of EIS measurements for a manifold
of SOH scenarios is time-consuming and challenging due to the
complexity of determining every possible ageing state, possibly
requiring accelerated ageing experiments. Additionally, battery
degradation differs significantly depending on usage patterns,
making it difficult to generalize findings across different operat-
ing conditions. We, therefore, propose to assess the variation of
ECM parameters with ageing by generating populations of these
parameters within a short range of anchor points in an abstract
SOH space, using a baseline established from experimental data.
As a showcase, we choose an experiment that provides data for
only three representative ageing states: a fresh battery cell, a
significantly aged cell and, finally, a damaged battery. These three
systems are measured and parameterized at various SOC levels
by EIS and ECM, resulting in three distinct sets of polynomial
coefficient vectors that represent their ageing states. Based on
the vectors derived from the experiment, small variations can
be applied to generate sufficiently sized populations of synthetic
systems that represent different ageing states. It allows for the
recognition of the ageing progression from fresh to aged and
ultimately to damaged conditions. The generation of polyno-
mial vectors is conducted using the quasi-Monte Carlo (QMC)
sampling method, which is characterized by its low discrepancy
properties. It ensures that the generated samples are evenly

distributed across the parameter space, enabling efficient explo-
ration of the high-dimensional landscape of battery parameters
while minimizing gaps and clustering typically associated with
traditional random sampling methods. Details will be elaborated
in Subsection 2.2.

2 | Methodology

Asiillustrated in Figure 1, this study demonstrates the application
of capturing the nuances of battery degradation without the
need for exhaustive EIS measurements at every SOH level. The
generated numerical models are then used to simulate responses
to small excitation signals, recording the corresponding voltage
signals. The resulting pairwise current and voltage data can be
expressed as impedance, which is then compared with measured
impedance to validate the accuracy of the methods. The short-
range population generation allows for rapid adjustments to the
model as new data becomes available, ensuring that it remains
relevant and reliable.

2.1 | Parameterization of ECM Elements as a
Function of SOC

EIS can be used to measure a battery’s response at multiple
SOCs throughout charging/discharging cycles. The resulting
impedance data are then commonly fitted to an assumed ECM for
each individual cycle. However, this point-wise approach along
the SOC dimension often yields noisy parameter values, mainly
due to inherent measurement noise and the non-linear ECM
fitting procedure. This can cause significant aliasing between
the model parameters. Thus the process has to be repeated
carefully without ageing the battery noticeably, to support the
assumption of vanishing drift of the battery’s condition on the
slower SOH timescale.

For this work, we assume the simplified ECM for a coin cell that
includes three different element types: a serial resistance, ZARC
elements, and a Warburg element, to represent different aspects
of its behaviour [8]:

P R S A
Z(w)—RS+;1+ AT \/5(1 Jcoth(Cypo), (1)

where R, is the serial resistance. A ZARC element is functionally
a parallel circuit of a constant phase element, representing a lossy
capacitor, and a resistor. Here 7, is the mean time constant, ¢, is
the depression factor, and Ry, is the charge transfer resistance of
one of in total three ZARC elements. If ¢, = 1, the ZARC behaves
asaparallel RC circuitelement and if ¢, = 0, it behaves as an ideal
resistor. For a finite space Warburg element, o is the Warburg
coefficient and Cy,, is the limit of capacitance.

As recently shown, the initial and boundary conditions of ECM
fitting can be extracted by a transform-based DRT analysis which
allows one to reduce the ambiguity in the construction of ECM
and thus over-fitting [7]. The fitted ECM parameters, such as Ry,
Ry, Ty, i, 0 and Cyy,, vary as a function of SOC, thus Equation (1)
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FIGURE 1 | The architecture of the proposed method.

should be generalized in the following form:

3
R,(SOC)
Z(w,S0C) = R,(SOC) +
(@,80C) = R(SOC) ;1+(jw1k(SOC))¢k(SOC)

+ M(l — J) coth(C;,(SOC) o(SOC)). (2)

\/c_o

These dependencies can be quantified for each parameter as
a function of SOC. However, the relationship between ECM
parameters and SOC is often non-linear, making it difficult
to find a simple mathematical model that accurately captures
the dependencies. Additionally, a non-linear fit of the SOC
dependence based on noisy ECM parameter estimates introduces
additional sources of error and uncertainty into the parameter
estimation process and increases the risk of over-fitting. Over-
fitting occurs when a model is too complex and captures noise
or random variations in the data rather than the true underlying
relationships. It leads to poor generalization and inaccurate
predictions when the model is applied to new data.

This problem can be mitigated by using an orthogonal function
basis, such as Chebyshev polynomials, to project data on the
optimal solution. Chebyshev polynomials have the property of
minimizing the maximum absolute error over a given interval
[9]. This helps to prevent physically unrealistic large values of the
fitted polynomials in regions with sparse data, allowing for more
accurate fits in areas that are more densely sampled. Therefore, a
more robust and precise representation of ECM parameter depen-
dencies on SOC across the entire range is achieved. Additionally,
it ensures that the parameterization is equally well-determined
across the whole SOC range, reducing the risk of overfitting or
underfitting in specific regions.

Impedance

Validation

Voltage

Unlike simple polynomial regression with monomial basis func-
tions {x*}, the use of orthogonal polynomials results in a
well-defined least-squares functional approximation,

)= a,T,(x) ©)

where a, is the coefficient associated with the Chebyshev
polynomial T,(x) of order n, and T,(x) is defined as:

T,(x)=T,(cosB) =cos(nb), xel[-1,1] 4)

with weight function w(x) = in the scalar product [10].

1
V(-x2)
Chebyshev polynomials of the first kind have the advantage of
being well-behaved and oscillating within the interval [-1, 1]. This
characteristic is particularly beneficial because the boundaries of
the SOC range, such as 0% or 100%, are rarely reached in practice.
By employing Chebyshev polynomials, potential issues related
to extrapolation or poor fitting near the boundaries are thus
additionally mitigated. For example, the relationship between
parameter R, and SOC, which needs to be mapped to the domain
of definition of the Chebyshev polynomials, could be expressed as

R,(SOC) = a,T,(SOC) + a,T,(SOC), SOC € [-1,1]. (5
The goal is to find optimal coefficients a, to minimize the
error between estimated values for, for example, R,(SOC) and
experimentally parameterized values R,(SOC). Using the discrete
orthogonality property, coefficients can be approximated as

-1

2
anzﬁ

MZ

f(xi)Tn(xi)s (6)

1
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where N is the total number of data points, f(x;) is the value
of the function being fitted at the data point x; and T,(x;) is
the value of the nth Chebyshev polynomial evaluated at x;. This
property simplifies the calculations and makes the convergence
of the regression analysis faster, resulting in more efficient
parameter estimation.

As a result, the parameters from Equation (2) depending on SOC
are expressed as 32-dimensional Chebyshev coefficient vectors
instead of 12 X 17 independent ECM parameter values at each
SOH. These Chebyshev coefficients are thus used to create a
compact and robust representation of the battery’s history over
a single charging/discharging cycle. For representing multiple
cycles or an ageing procedure, these vectors of coefficients
should be concatenated to form a comprehensive trajectory of the
battery’s entire history. This approach enables a thorough analysis
of the battery’s behaviour, performance degradation, and ageing
effects over time.

2.2 | Model Variation Over Cell Lifetime

Representing SOH changes over multiple charging/discharging
cycles through their effects on ECM parameters is challenging.
SOH is a specific indicator that quantifies the current condition or
health of a system relative to its original or ideal state. It provides
a snapshot of the battery’s health at a given point in time and
it cannot be directly measured but is often inferred based on
cycle numbers. However, relying solely on cycle numbers to
infer SOH has limitations, especially when abnormalities and
subsequent recovery are involved. Sudden abnormalities, such
as rapid voltage drops or battery overheating, might temporarily
accelerate degradation in batteries but may be followed by partial
or nonlinear recovery. Cycle numbers alone may not capture
the extent of this recovery. Besides, SOH is a multifaceted and
interdependent concept encompassing capacity loss, impedance
changes, ageing rates and more. Capturing all these dimensions
accurately in a single set of parameters is demanding.

Alternatively, a data-driven approach may be chosen. Machine
learning models help to parameterize and represent SOH as mul-
tidimensional clusters for quantifying and tracking the health of
a battery relative to its initial state. It enables to monitor a lifetime
or ageing trajectory and predict the remaining useful life of a bat-
tery based on various ageing scenarios. Nevertheless, obtaining
reliable and comprehensive experimental data over a long period
for machine learning makes a purely data-driven black-box
approach time-consuming and resource-intensive. Parameteriz-
ing an SOH manifold within a Chebyshev space as described
in the preceding section provides a means to amend scarce
experimental data with computationally generated, synthetic
battery models. As more measured data becomes available during
the lifetime of the battery, the synthetic data can be gradually
replaced, allowing for continuous refinement and improvement
of the statistical models representing the battery’s behaviour.

One vector of Chebyshev coefficients represents a battery’s SOC-
dependent impedance behaviour over a single cycle. Then, SOH is
effectively depicted as distinct regions or clouds within a broader
space covering the realizable Chebyshev vectors. These clouds
dynamically shift and evolve as the battery undergoes the ageing

process. Each cloud within this space signifies a particular SOH
that a battery can manifest. Visualizing SOH in this manner helps
in grasping the continuous and non-linear nature of the ageing
process. It allows for a more comprehensive understanding of
how the battery’s health progresses over time, capturing the
variability and nuances that come with different ageing patterns.
The objective is to determine reasonable values for the vari-
ation of these coefficient vectors, effectively broadening their
representation to cover specific regions of interest throughout
the battery’s operational lifespan, while maintaining sufficient
resolution between the SOH regions to be able to unambiguously
identify them in EIS measurements.

The QMC method generates high-dimensional vectors within a
specified interval, aligned with uncertainty estimates of model
parameters. By using quasi-random sequences, it samples the
parameter space more uniformly and efficiently than traditional
random sampling methods. Since Chebyshev coefficients for a
single cycle are high dimensional as described above, QMC is
particularly suitable for local sampling in this space.

To generate points in the parameter space, one selects a quasi-
random sequence, such as the Sobol sequence [11], which has
good low-discrepancy properties. The Sobol sequence provides 2"
points in a unit hypercube with d dimensionality [0, 1)¢, where
each point is obtained by bitwise exclusive or (XOR) operations
on a set of direction numbers. Then the generated Sobol points are
transformed to mimic the normal distribution N(u, ¥). Therefore,
generating a sufficient number of points n through QMC is
described as

n=2" € [0,1)¢ ~ N(u,X). (7

The set of Chebyshev coefficients for the experimental anchor
points is established through parameterization based on exper-
imental impedance data, as detailed in Subsection 2.1. Each of
the measured reference sets at a certain SOH gives one anchor
point. To represent the battery’s behaviour across its lifespan,
the just described QMC sampling is then applied to generate
SOH point clouds around these fundamental anchor points while
ensuring appropriate boundary conditions. A simple method
assumes high-dimensional spheres around each anchor point,
with the radius set to half the distance between neighbouring
anchor points, ensuring appropriate separation. This sampling
process results in thousands of points that effectively populate the
space around the experimental reference sets.

3 | Materials and Methods
3.1 | Electrical Simulation

The generated Chebyshev coefficient vectors at differently aged
battery clouds are used to construct new ECMs at a variety of
SOCs. These ECMs serve as numerical models that represent
the battery’s behaviour. The ISEA Framework [8], a real-time
capable electrical simulation platform, was used to compute
voltage responses of each ECM at its respective SOC to oscillating
current profiles covering the experimental EIS conditions. The
input time-based load profiles are sinusoidal waveforms, and for
each time step an Euler scheme is used to calculate the voltage
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response based on the differential-algebraic ECM equations
[12]. The calculated voltage at every time step builds a voltage
profile that corresponds to the current input. The impedance
is then calculated as the ratio of voltage to current in the
frequency domain.

3.2 | EIS Measurements

To fully parameterize a cell for simulation with the ISEA
framework, EIS measurements at multiple SOCs of each cell
were acquired using a BioLogic SP-200 potentiostat. To this end,
commercial LiCoO, LIR2023 button cells were charged with 2C
using the Constant Current-Constant Voltage (CC-CV) method
until a residual charging current of 0.05 C was reached. After
a resting period of 10 min, an EIS spectrum in galvanostatic
mode between 200 kHz and 10 mHz was measured, followed by
a discharge current of 0.1 C for 30 min to ensure approximately
5-7% SOC discharge. Before the next set of EIS measurements,
the cell was rested for 1 h until a steady state was reached. This
procedure was repeated until the cell was fully discharged.

To exactly determine the SOC values of each subsequent measure-
ment step, the individual discharge capacities were calculated
by integrating the discharge current over time. The sum of all
capacity values resulted in the 0.1 C discharge capacity of the
investigated cell.

Three cells were taken into consideration:

* a fresh cell that has seen no use before the parameterization
other than calendaric ageing since production (37 mAh).

* an aged cell that has been used regularly in real-life applica-
tions and therefore has a lower capacity compared to the fresh
cell (25 mAh).

* adead cell that has gone through excessive cyclic and calendar
aging and shows a significantly lower capacity compared to
the fresh cell (16 mAh).

4 | Results and Discussion

4.1 | Approximation of ECM Parameters versus
SOC by Chebyshev Polynomials

The determination of Chebyshev polynomials for the ECM
parameters, derived from fits of experimental impedance data at
various SOC values, is illustrated in Figure 2. The selection of
suitable polynomial orders rests on the observed changes in Root
Mean Squared Error (RMSE) and coefficient of determination,
expressed as R2.

As pointwise parameterized results demonstrate, the serial
resistance R, increases as SOC decreases, indicating that the
battery is discharging [13]. This phenomenon is consistent with
previously reported experimental results [14]. The evaluation
results quantifying the relationship between SOC and R, with
varying Chebyshev polynomial degrees illustrate that the RMSE
decreases, while R? increases as the model complexity grows.

Selecting the polynomial degree that minimizes RMSE and
maximizes R*> without introducing overfitting requires careful
consideration. Additionally, for developing a digital twin model,
the objective is to balance accuracy with dimensionality reduc-
tion. For the case of R, the analysis indicates that RMSE and
R? stabilize at a relatively low polynomial degree-typically first
order. Beyond this point, additional complexity does not provide
a meaningful improvement in model accuracy. This stabilization
suggests that the relationship between R, and SOC can be
reasonably approximated as linear.

The parameters R,, 7, and ¢, correspond to the low-frequency
ZARC element, with 7, being the largest time constant among
the three ZARC elements. As observed, both R; and 7; show an
increasing trend with SOC, exhibiting an approximately linear
relationship. This behaviour is consistent with the role of the time
constant T = RC, where increasing resistance during charging
indicates a buildup of charge. This phenomenon may also reflect
the formation and growth of the solid electrolyte interface layer,
which typically contributes to increased resistance over time.
The evaluation of RMSE and R? for these parameters suggests
that a low-order polynomial, such as a first-order regression, is
sufficient to capture their trends with reasonable accuracy.

In contrast, R; and 75, which represent the high-frequency ZARC
element, display a decreasing trend with increasing SOC. Their
RMSE and R? plots against polynomial order also suggest that a
linear regression function is adequate for their representation.

The ZARC element at the middle frequency has more fluctuating
values as a function of SOC, requiring higherdegree polynomial
functions to accurately capture these dependencies. For instance,
R, can be effectively described by a second-order polynomial
function. However, RMSE and R? plots for 7, do not demon-
strate clear stabilization within the expected polynomial degree
range. In this study, the intersection point of these lines is
chosen, corresponding to a third-order polynomial, as it strikes
a balance between accurately fitting the data and controlling
model complexity.

The ¢ parameters exhibit strong fluctuations, necessitating
higher degree polynomial functions for adequate representation.
Based on the strategy of selecting either stabilizing or intersecting
points, ¢, is best represented by a second-order polynomial, ¢, by
a third-order polynomial, and ¢, by a first-order polynomial.

The Warburg coefficient o and limit of capacitance Cj;,, for the
diffusion process represent the straight line in the low-frequency
region of the Nyquist plot. o decreases as SOC increases, but
conversely, Cj,, increases with SOC. Both parameters can be
expressed reasonably by second-order polynomial functions.

To evaluate the polynomials, the SOC value (in Figure 2 shown,
e.g., for SOC = 70% by the dashed red line) is substituted
into the defined Chebyshev polynomials and regular polynomial
functions to obtain the corresponding parameter values. These
values are then used to calculate the new impedance according
to Equation (2). A 70% SOC serves as a representative mid-
point in the SOC range, where charging and discharging effects
are relatively balanced, making it highly relevant for practical
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FIGURE 2 | Chebyshev polynomial regression of ECM parameter values as a function of SOC (left), and their RMSE and R? for different degrees of

Chebyshev polynomial regression (right).

applications requiring optimal battery performance. In Figure 3,
the mathematically calculated and experimentally observed EIS
spectra, along with their residuals, are compared.

The maximum polynomial order for parameter fitting is con-
strained to four, ensuring a highly regularized model. Con-
sequently, the differences between two polynomial expansion
methods are not substantial. Although both fitting approaches
yield visually satisfactory results on the Nyquist plot, the Cheby-
shev polynomial regression outperforms regular polynomial fit-
ting in terms of residual distribution and overall fit accuracy. The

more homogeneous distribution of residuals and the lower RMSE
across the entire frequency range highlight its precision and
reliability in capturing the impedance behaviour of the system.

While pointwise fitting of experimental EIS data provides valu-
able insights into battery behaviour at a specific SOC, it becomes
impractical for applications requiring continuous or interpolated
SOC data. For such scenarios, a global EIS fit offers a more
efficient and scalable solution by consolidating information from
all SOCs into a unified representation. This approach avoids
the redundancies and inconsistencies that may arise when
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FIGURE 2 | (Continued)

performing separate fits for each SOC and enables smoother
transitions between SOCs, making it particularly valuable for
dynamic battery management systems and digital twin models.
To achieve a robust global EIS fit, selecting appropriate starting
parameters for the non-linear fitting process is essential. The
Chebyshev coefficients taken from the pointwise approach, as
described in this context, offer a reliable foundation for initial-
izing. Details of the optimized Chebyshev coefficients, obtained
through direct fitting of the experimental EIS data, are provided
in the Supporting Information.

Chebyshev polynomial coefficients provide a capable and
dependable alternative for representing traditional ECM parame-

le-2
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1.41 106
w
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o
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Order of polynomials
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Order of polynomials

o

o4

ters across the SOC range. This analysis focuses on an individual
spectrum at a specific SOC. The subsequent section will delve into
a comparative analysis across multiple spectra.

4.2 | Model Variation Over Lifetime

The Chebyshev coefficients determined above are based
on ECM fitting to measured impedance data from a single
cycle. Representing an ECM requires 32 coefficients, making
visualization of these high-dimensional vectors challenging.
Thus the parameter ¢, was taken as an example, which is
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FIGURE 2 | (Continued)

parameterized by a second-order polynomial function with three
coefficients, as visualized in Figure 4.

Three fundamental sets of coefficients, derived from experimen-
tal data and denoted as a fresh cell (red), an aged cell (blue) and
a dead cell (green), serve as anchor points indicated by stars in
this three-dimensional space. Using the QMC sampling method,
additional coefficients are generated around these anchor points
within spherical boundaries, as described in Subsection 2.2, and
are visualized as dot clouds.

The generated coefficients serve as the basis for computing ECM
parameter values and constructing polynomial functions across

0 1 2 3 4 5 6
Order of polynomials

the SOC range. These new polynomial functions are required
to align with the behaviour of the Chebyshev polynomials
represented by the anchor points. If the generated polynomial
functions deviate significantly from this behaviour, the corre-
sponding points are discarded. For example, if a parameter value
is expected to decrease with increasing SOC but the generated
coefficients cause the function to yield values that increase
with SOC, these coefficients are considered erroneous and are
therefore excluded.

The analysis reveals that the fresh cell and aged cell groups are
located in close vicinity, but still well separated, whereas the dead
cell group is significantly farther away. It indicates that the healthy
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=35% (d) are shown.

batteries and unhealthy batteries are easily discriminated in the
Chebyshev space.

Notably, ¢, of dead cells increases dramatically with SOC, while
the variation is minimal for healthy cells. At higher SOC values,
the three sets of curves strongly overlap in Figure 4a, whereas

at lower SOC values, they remain well separated. This observa-
tion suggests that batteries can be effectively grouped by their
lifetime characteristics, even when examining a single parameter.
Additionally, implicit SOC normalization should be considered
at high SOC. 100% SOC corresponds to the maximum capacity
that a cell can achieve at its current SOH. Therefore, while high
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experimental data; (c) shows residuals over multiple SOCs; (d) is impedance variance along with standard deviation of QMC generation over multiple

SOCs.

SOC values reflect roughly the same range of behaviour for fresh
and aged cells, they exhibit significantly different behaviour for
dead cells due to their lower absolute capacity. An outlier is
observed in the fresh and aged cell clouds, even at low SOC levels,
emphasizing the importance of monitoring the generation of
outliers in this synthetic data approach as the standard deviation
of QMC generation increases.

Additionally, impedance data at SOC = 70% and SOC = 35%,
derived from aged and fresh battery models, are presented in
Figure 4c,d. These figures demonstrate significant differences
in impedance between the two distinct ageing states while the
generated models align closely with their respective anchor point
models. This holds true despite the similarity in individual
parameter values, as shown in Figure 4a. Furthermore, Figure 2a
shows that the original values of internal resistance at SOC =
70% closely match the polynomial-fitted values. Therefore, SOC =
35% was chosen for further investigation, where the fitted internal
resistance deviates notably from the original. As illustrated in
Figure 4d, this minor variation in internal resistance does not
significantly impact the overall behaviour, confirming that the
generated models accurately represent the populations of specific
ageing states. The distinct separation between fresh and aged
groups and analysis persists, regardless of SOC values, validating
the robustness of the modelling approach.

Expanding this approach, QMC generation applied to the rest
of parameters builds high-dimensional vectors representing dif-

ferently aged cells, enabling the storage of large physics-based
synthetic datasets for further machine learning approaches
(Figure 5). The impedance generated by Chebyshev polyno-
mials closely aligns with the experimental data, consistently
outperforming standard polynomials. The overall mean value of
Chebyshev polynomials is smaller than that of regular polyno-
mials. Additionally, Chebyshev polynomials exhibit a smoother
transition in response to changes in SOC, ensuring a more stable
and realistic representation of battery behaviour.

The sensitivity of impedance variation to the standard deviation
in QMC generation also highlights that the expansion rate of
generated clouds differs between polynomial classes. As the
variance of the Gaussian distribution increases, the variance of
impedance grows more rapidly with standard polynomials com-
pared to Chebyshev polynomials. In practical terms, this slower
expansion rate with Chebyshev polynomials ensures gradual
cloud growth, preventing significant overlap between distinct
clouds. This controlled scaling supports the reliable separation
of different ageing states while maintaining the integrity of the
generated datasets.

5 | Conclusions

To reduce the dimensionality of model representation within
a single charging/discharging cycle, Chebyshev polynomials
effectively quantify the SOC dependence of ECM parameters
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in a robust way, which allows a reconstruction of the ECM at
any desired SOC value in a concise manner. Each cycle can
be represented by a specific set of Chebyshev coefficients that
correspond to the fitted parameters at different SOC values
during that cycle. These coefficients collectively form the battery’s
history over that specific cycle.

The QMC method facilitates the efficient generation of high-
dimensional Chebyshev coefficient vectors based on few exper-
imental data, allowing for the construction of distinct and
meaningful regions of battery health without requiring extensive
experiments. This approach provides a structured representation
of a battery’s health, capturing its progression through distinct
categories: fresh, aged and dead battery cells. The use of physics-
informed synthetic training data, derived from these sampled
models, establishes a solid foundation for further machine
learning applications.
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